1,430 research outputs found

    Contraction of westward-travelling nonlocal modons due to the vorticity filament emission

    No full text
    International audienceLong-term evolution of westward-travelling non-local modons on the ?-plane, i.e. dipolar vortices imbedded in slowly damping Rossby wave fields, is studied numerically. In the framework of the nondivergent (barotropic) model, two stages of the evolution are observed. At the first stage (for about 30 synoptic periods), the parameters and the form of the vortex practically remain constant, whereas at the second stage, vorticity filaments are emitted. Due to the filamentation, the vortex core contracts, the potential vorticity peaks of the vortex pair get closer, and the modon speeds up. In the divergent (equivalent-barotropic) model, nonlocal modons and the Lamb modon (that has no wave field outside the dipolar core) evolve much more slowly, essentially preserving the initial shape and propagation speed until about 100 synoptic periods

    Emergence of modons from collapsing vortex structures on the β-plane

    Get PDF
    The evolution of unstable barotropic vortices is studied numerically. Exact solutions to the equation of potential vorticity conservation under the rigid lid condition, as well as nonsteady-state configurations, are set as initial states in the evolutionary experiments. The examined shielded modon structures usually collapse within one to several synoptic periods and radiate vortex pairs propagating westward and eastward. The latter are shown to be modons of Larichev and Reznik. The westward dipoles are identified as nonlocal modons, that is, vortical cores of stationary nonlinear Rossby waves. In the case of standing Stern modons, some small initial perturbations induce slow westward drift and subsequent collapse of the vortex structure due to the Rossby wave radiation, others lead to their transformation into Larichev and Reznik\u27s modons. This conclusion is supported by the results of a numerical integration of the linear stability problem

    RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    Get PDF
    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light

    Strongly residual coordinates over A[x]

    Full text link
    For a domain A of characteristic zero, a polynomial f over A[x] is called a strongly residual coordinate if f becomes a coordinate (over A) upon going modulo x, and f becomes a coordinate upon inverting x. We study the question of when a strongly residual coordinate is a coordinate, a question closely related to the Dolgachev-Weisfeiler conjecture. It is known that all strongly residual coordinates are coordinates for n=2 . We show that a large class of strongly residual coordinates that are generated by elementaries upon inverting x are in fact coordinates for arbitrary n, with a stronger result in the n=3 case. As an application, we show that all Venereau-type polynomials are 1-stable coordinates.Comment: 15 pages. Some minor clarifications and notational improvements from the first versio

    Collapse-and-revival dynamics of strongly laser-driven electrons

    Full text link
    The relativistic quantum dynamics of an electron in an intense single-mode quantized electromagnetic field is investigated with special emphasis on the spin degree of freedom. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity dependent emissions and absorptions of field quanta. In analogy to the well-known phenomenon in atoms at moderate laser intensity, we put forward the conditions of collapses and revivals for the spin evolution in laser-driven electrons starting at feasible 101810^{18} W/cm2^2.Comment: 18 pages, 4 figure

    Recognition of Facial Expressions by Cortical Multi-scale Line and Edge Coding

    Get PDF
    Face-to-face communications between humans involve emotions, which often are unconsciously conveyed by facial expressions and body gestures. Intelligent human-machine interfaces, for example in cognitive robotics, need to recognize emotions. This paper addresses facial expressions and their neural correlates on the basis of a model of the visual cortex: the multi-scale line and edge coding. The recognition model links the cortical representation with Paul Ekman's Action Units which are related to the different facial muscles. The model applies a top-down categorization with trends and magnitudes of displacements of the mouth and eyebrows based on expected displacements relative to a neutral expression. The happy vs. not-happy categorization yielded a. correct recognition rate of 91%, whereas final recognition of the six expressions happy, anger, disgust, fear, sadness and surprise resulted in a. rate of 78%

    Enhanced inverse bremsstrahlung heating rates in a strong laser field

    Full text link
    Test particle studies of electron scattering on ions, in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure

    Markbooks

    Get PDF
    A collection of carefully left traces — and their occasionally accompanying thoughts — Markbooks is the result of “an ongoing conversation about attention, its ecologies, its forms, and the markings of its passage.” “For many of the authors included here, the practice of making — and then reading — their little book located them in time… [T]here is paper, and there are pencils, and there are bodies to mark their own motion.

    Multiphoton Ionization as Time-Dependent Tunneling

    Get PDF
    A new semiclassical approach to ionization by an oscillating field is presented. For a delta-function atom, an asymptotic analysis is performed with respect to a quantity h, defined as the ratio of photon energy to ponderomotive energy. This h appears formally equivalent to Planck's constant in a suitably transformed Schroedinger equation and allows semiclassical methods to be applicable. Systematically, a picture of tunneling wave packets in complex time is developped, which by interference account for the typical ponderomotive features of ionization curves. These analytical results are then compared to numerical simulations and are shown to be in good agreement.Comment: 36 pages (also printable half size), uuencoded compressed tarred Latex file with 9 Postscript figures included automaticall

    "Handling Updates and Crashes in VoD Systems"

    Get PDF
    Though there have been several recent efforts to develop disk based video servers, these approaches have all ignored the topic of updates and disk server crashes. In this paper, we present a priority based model for building video servers that handle two classes of events: user events that could include enter, play, pause, rewind, fast-forward, exit, as well as system events such as insert, delete, server-down, server-up that correspond to uploading new movie blocks onto the disk(s), eliminating existing blocks from the disk(s), and/or experiencing a disk server crash. We will present algorithms to handle such events. Our algorithms are provably correct, and computable in polynomial time. Furthermore, we guarantee that under certain reasonable conditions, continuing clients experience jitter free presentations. We further justify the efficiency of our techniques with a prototype implementation and experimental results. (Also cross-referenced as UMIACS-TR-97-47
    • …
    corecore